PyTorch-26H-1

PyTorch-26H-1

PyTorch-26H-1

主页:https://www.freecodecamp.org/news/learn-pytorch-for-deep-learning-in-day/

youtub:https://youtu.be/V_xro1bcAuA

github:https://github.com/mrdbourke/pytorch-deep-learning

Learn PyTorch for Deep Learning: Zero to Mastery book:https://www.learnpytorch.io/

PyTorch documentation:https://pytorch.org/docs/stable/index.html

Chapter 0 – PyTorch Fundamentals

what is deep learning?

Machine learning is turning things (data) into numbers and finding patterns in those numbers.

Deep Learning ∈ Machine Learning ∈ Aritfical Intelligence

传统程序:输入+规则→输出
机器学些:输入+输出→规则

Why use machine/deep learning?

对于复杂的问题,无法找到所有的规则。

The number one rule of ML

“If you can build a simple rule-based system that doesn’t require machine learning, do that.”

  • A wise software engineer… (actually rule 1 of Google’s Machine Learning Handbook)

  • What deep learning is good for

Problems with long lists of rules- when the traditional approach fails, machine learning/deep learning may help.
规则列表过长的问题——当传统方法失败时,机器学习/深度学习可能会有所帮助。

Continually changing environments- deep learning can adapt (learn’) to new scenarios.
不断变化的环境——深度学习可以适应(学习)新场景。

Discovering insights within large collections of data- can you imagine trying to hand-craft rules for what 101 different kinds of food look like?
在大量数据中发现见解——你能想象尝试手工制定 101 种不同食物的规则吗?

  • What deep learning is not good for

When you need explainability- -the patterns learned by a deep learning model are typically uninterpretable by a human.
当你需要可解释性时——深度学习模型学习到的模式通常无法被人类解释。

When the traditional approach is a better option一if you can accomplish what you need with a simple rule-based system.
当传统方法是更好的选择时——如果你可以使用简单的基于规则的系统完成所需的工作。

When errors are unacceptable一since the outputs of deep learning model aren’t always predictable.
当错误不可接受时——因为深度学习模型的输出并不总是可预测的。

When you don’t have much data一deep learning models usually require a fairly large amount of data to produce great results.
当你没有太多数据时——深度学习模型通常需要相当大量的数据才能产生很好的结果。

Machine learning vs deep learning

  • Machine learning

适合处理结构化数据

常见算法:
Random forest 随机森林
Gradient boosted models 梯度提升模型
Naive Bayes 朴素贝叶斯
Nearest neighbour 最近邻
Support vector machine 支持向量机

  • Deep learning

适合处理非结构化数据

常见算法:
Neural networks 神经网络
Fully connected neural network 全连接神经网络
Convolutional neural network 卷积神经网络
Recurrent neuralnetwork 循环神经网络
Transformer

Anatomy of neural networks

数据→数字→神经网络→权重→输出

Different learning paradigms

监督学习:大量已知数据标注。

无监督学习:自动分析数据。

迁移学习:将学习到的模式嵌入到新的模型中。

强化学习reinforcement learning:奖励想要的结果。

What can deep learning be used for?

What is/why PyTorch?

What are tensors?

Outline

How to (and how not to) approach this course

Important resources

Getting setup

Introduction to tensors

Creating tensors

Tensor datatypes

Tensor attributes (information about tensors)

Manipulating tensors

Matrix multiplication

Finding the min, max, mean & sum

Reshaping, viewing and stacking

Squeezing, unsqueezing and permuting

Selecting data (indexing)

PyTorch and NumPy

Reproducibility

Accessing a GPU

Setting up device agnostic code

文章作者: HibisciDai
文章链接: http://hibiscidai.com/2024/08/14/PyTorch-26H-1/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 HibisciDai
好用、实惠、稳定的梯子,点击这里